Mark Scheme (Results)

November 2020

Pearson Edexcel International GCSE

In Chemistry (4CH1) Paper 1C and Science (Double Award) (4SD0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020
Publications Code 4CH1_1C_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Total for Q1 = 7 marks

Question number	Answer	Notes	Marks
2 (a) (b)	a description including M1 measure the melting point M2 if fixed/sharp melting point the substance is pure M3 if melts over range of temperatures the substance is a mixture	1 mark for each correct line form boxes on left If more than one line from a box on left column do not award mark for that box ALLOW measure boiling point for M1 and substitute b.p. for m.p in M2 and boils for melts in M3 ALLOW max 2 if reference to freezing point as opposed to melting point	3 cler

Total for Q2 $=6$ marks

Total for Q3 = 8 marks

Question number	Answer	Notes	Marks
4 (a) (i) (ii)	hydroxide/OH ${ }^{-}$ C 11 is correct because 11 is a possible pH for ammonia solution A is not correct because 3 is not a possible pH for ammonia solution B is not correct because 6 is not a possible pH for ammonia solution D is not correct because 14 is not a possible pH for ammonia solution	$\begin{aligned} & \text { ALLOW HO- } \\ & \text { REJECT OH } \end{aligned}$	$\begin{gathered} 1 \\ \text { comp } \end{gathered}$
(b) (i) (ii)	C a proton donor is correct because an acid acts as a proton donor A is not correct because an acid does not act as a neutron donor B is not correct because an acid does not act as a neutron acceptor D is not correct because an acid does not act as a proton acceptor C is correct because phenolphthalein is pink in alkali and colourless in acid A is not correct because phenolphthalein is not orange in alkali and red in acid B is not correct because phenolphthalein is not yellow in alkali and red in acid D is not correct because phenolphthalein is not colourless in alkali and pink in acid		1 comp 1 comp

Question number	Answer	Notes	Marks
5 (a)	Any two from		
	M1 all in Group 7/same group		$\stackrel{2}{\text { Grad }}$
	M2 because all have 7/same number of electrons in outer shell		
	M3 the number of shells determines the Period they are in		
(b) (i)	Ultraviolet radiation	ALLOW UV radiation ALLOW ultraviolet light /UV light/ultraviolet rays/UV rays	$\begin{gathered} 1 \\ \text { cler } \end{gathered}$
(ii)	$\mathrm{Cl}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$	ALLOW multiples	$\begin{gathered} 1 \\ \text { Grad } \end{gathered}$
(iii)	M1 attraction between shared pair of electrons		$\stackrel{2}{\operatorname{Exp}}$
	OR		
	M1 bonding/shared pair of electrons		
	M2 attracted to (both) nuclei of atoms (in the bond)	ALLOW M1 attraction of (two) nuclei M2 for shared/bonded pair of electrons (between them)	
(iv)	M1 the four shared pairs of electrons between carbon and the other four atoms		$\stackrel{2}{\text { Grad }}$
	M2 rest of molecule correct including the three lone pairs of electrons around chlorine atom	M2 DEP M1 ALLOW any combination of dots and crosses	
(v)	M1 weak forces of attraction between molecules/weak intermolecular forces	ALLOW weak bonds between molecules /weak intermolecular bonds	$\stackrel{2}{\operatorname{Exp}}$
	M2 little (heat) energy needed to overcome them	IGNORE less energy 0 marks if implication is that covalent bonds are weak/broken	

(c)	Explanation including $M 1$ (one) electron (per carbon atom) delocalised $M 2$ (so) free to move (between layers)	IGNORE sea of electrons /free electrons M2 DEP on mention of electrons 0 marks if mention of
ions in graphite		

Question number	Answer	Notes	Marks
6 (a) (i) (ii) (iii)	M1 alkanes M2 because fits general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ D M1 (compounds of F with same molecular formula $/ \mathrm{C}_{4} \mathrm{H}_{10}$) but different structural/displayed formulae M2 structural/displayed formula of butane M3 structural/displayed formulae of methylpropane	M2 not dep on M1 ALLOW C3 H_{8}	$\stackrel{2}{\text { Grad }}$ 1 cler 3 Exp
(b)	a description including the following points M1 heat/vapourise crude oil M2 pass into (fractionating) column/tower M3 fractions/compounds/molecules/hydrocarbons separate because of different boiling points M4 compound D collected at top of column/in refinery gas fraction	ALLOW boil ALLOW idea of temperature gradient All marks could be scored from a suitably labelled diagram MAX 3 if description of lab process If confusion with cracking only M1 can be awarded	$\begin{gathered} 4 \\ \operatorname{Exp} \end{gathered}$

Question number	Answer	Notes	Marks
6 (c) $\begin{array}{ll}\text { (i) } \\ & \\ & \\ & \text { (ii) } \\ & \\ & \\ & \text { (iii) }\end{array}$	addition (polymer)	REJECT additional	$\begin{gathered} 1 \\ \text { Cler } \end{gathered}$
	poly(propene) / polypropene	ALLOW polypropylene	$\begin{gathered} 1 \\ \text { grad } \end{gathered}$
(iii)	$[\mathrm{H}$		$\begin{gathered} 2 \\ \operatorname{Exp} \end{gathered}$
	M1 correct repeat unit M2 brackets and n and extension bonds	Ignore bond angles ALLOW use of CH_{3} M2 DEP M1	

(e) (i) (ii) (iii)	M1 line on graph from $45^{\circ} \mathrm{C}$ to curve M2 candidate value of rate from graph at $45^{\circ} \mathrm{C}$ (expected value approx. 0.016/7) M1 substitute answer from (i) into (time =1 \div rate) M2 correct value as temperature increases rate of reaction increases	ALLOW mark on curve at 45 ${ }^{\circ} \mathrm{C}$ ACCEPT value to $+/-0.0005$ ACCEPT answers to 2 or more sig figs $\begin{aligned} & \text { rate }=0.016 \text { time }=62.5 \\ & \text { rate }=0.0165 \text { time }=60.6 \\ & \text { rate }=0.017 \text { time }=58.8 \end{aligned}$ ORA ALLOW positive correlation REJECT linear/directly proportional	$\begin{gathered} 2 \\ \text { exp } \\ \\ 2 \\ \text { exp } \\ \\ \\ 1 \\ \text { grad } \end{gathered}$
(f)	explanation including following points (when temperature increases) M1 (mean) kinetic energy of particles increases M2 (so) more successful collisions per second/unit time / more frequent successful collisions M3 rate (of reaction) increases	ALLOW particles move faster IGNORE vibrate more/faster ALLOW reference to more frequent collisions between particles having energy \geq activation energy ALLOW reaction is faster /speeds up	$\begin{gathered} 3 \\ \exp \end{gathered}$

Total Q7 =14

Question number	Answer		Notes	Marks
8 (a) (i)	measuring cylinder		ALLOW pipette/burette	$\begin{gathered} 1 \\ \text { cler } \end{gathered}$
(ii)	to ensure temperature same throughout solution OWTTE		ACCEPT to ensure heat evenly distributed throughout solution OWTTE	$\begin{gathered} 1 \\ \text { grad } \end{gathered}$
(iii)	blue		IGNORE qualifiers eg light/dark	$\begin{gathered} 1 \\ \text { cler } \end{gathered}$
			REJECT blue-green	
8 (b)			If readings are correct but in reverse order award 1 mark for M1 and M2	$\begin{gathered} 3 \\ \text { grad } \end{gathered}$
	Maximum temperature in ${ }^{\circ} \mathrm{C}$	27.3		
	Initial temperature in ${ }^{\circ} \mathrm{C}$	24.4		
	Increase in temperature in ${ }^{\circ} \mathrm{C}$	2.9		
	$\text { M2 } 24.4$			
	M3 2.9		ALLOW ECF for M3 if M1 and/or M2 incorrect	

Question number	Answer	Notes	Marks
8 (c) (i) (ii)	- \quad substitution into $Q=m c \Delta T$ - calculation of heat energy in Joules Example calculation M1 $\mathrm{Q}=50 \times 4.2 \times 3.3$ M2 693 J - calculate the amount, in moles, of CuSO_{4} - divide Q by the amount in moles - conversion to KJ - give the correct sign Example calculation M1 1.70 \div 159.5 OR 0.0107 M2 $693 \div 0.0107$ OR $64766(\mathrm{~J} / \mathrm{mol})$ M3 64.8 ($\mathrm{kJ} / \mathrm{mol}$) M4-64.8 (kJ/mol)	693 without working scores 2 marks ALLOW any number of SF throughout except one Mark CQ from (i) ALLOW use of 700 use of 700 gives -65.02 693 \& 0.011 gives -63 $700 \& 0.011$ gives -63.64 correct answer with correct sign and without working scores 4 correct answer without sign or incorrect sign and without working scores 3	2 exp exp 4
8 (d)	M1 temperature decreases/falls M2 (so) endothermic		$\begin{gathered} 2 \\ \text { grad } \end{gathered}$

Total Q8 = 14

Question number	Answer	Notes	Marks
9 (a) (i) (ii)	B decomposition A is not correct because when sodium hydrogencarbonate is heated combustion does not take place C is not correct because when sodium hydrogencarbonate is heated oxidation does not take place D is not correct because when sodium hydrogencarbonate is heated reduction does not take place (because) carbon dioxide/gas is produced/given off		1 comp
9 (b) (i) (ii)	to obtain a constant mass OWTTE / to show the reaction is complete OWTTE M1 advantage: to stop any solid $/ \mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ spitting out/being lost M2 disadvantage: the gas(es)/CO2/ $\mathrm{CO}_{2} \mathrm{O} /$ steam could not easily escape OWTTE	ACCEPT to ensure only $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is left (in crucible) ACCEPT to ensure all the NaHCO_{3} has reacted /decomposed REJECT references to stopping gases escaping	$\stackrel{2}{\exp }$

Question number	Answer	Notes	Marks
$9 \quad \text { (c) } \quad \text { (i) }$ (ii)	$3.25(\mathrm{~g})$ - calculate moles of NaHCO_{3} - use equation to determine moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ - multiply by M_{r} to find mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ Example calculation: M1 $3.25 \div 84$ OR 0.0387 (mol) M2 $0.0387 \div 2$ OR $0.01935(\mathrm{~mol})$ M3 $0.01935 \times 106=2.05(\mathrm{~g})$ OR - use of equation to relate mass of NaHCO_{3} to mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ - shows how to find mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ using 3.25 g NaHCO_{3} - correct evaluation of answer Example calculation: M1 (2x84)/168 (g) NaHCO ${ }_{3} \rightarrow 106$ (g) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ M2 $3.25\left(\mathrm{~g} \mathrm{NaHCO}_{3}\right) \rightarrow(106 \div 168) \times 3.25\left(\mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ M3 $2.05\left(\mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}\right)$	mark CQ on (i) ALLOW any number of sig figs except 1 2.05 (g) without working scores 3 marks 4.1 (g) without working scores 2 marks mark CQ on (i)	$\begin{gathered} 1 \\ \exp \\ 3 \\ \text { exp } \end{gathered}$
$9 \quad$ (d) (i) (ii)	$\begin{aligned} & \text { M1 percentage yield }=4.2 \div 4.8 \text { OR } 0.875 \\ & \text { M2 }=(0.875 \times 100)=87.5(\%) \end{aligned}$ any one from M1 sodium hydrogencarbonate was impure M2 not all sodium hydrogencarbonate reacted/decomposed	ACCEPT 88 (\%) Correct answer without working scores 2	2 grad 1 grad

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

